Blazor: Blazing A Trall For
NET Web Developers

Shaun Walker
shaun.walker@softvision.com

Shaun Walker

- Creator of DotNetNuke

- Founder of DNN Corp

- Microsoft MVP

- ASP Insider

- Chairman .NET Foundation Advisory Council

Technical Director & Enterprise Guildmaster Cognizant

Cognizant Softvision softvision &)~ <NET

foundation

WINDOWS
DEVELOPER
POWER TOLS

Microsoft®
Most Valuable
Professional

What is Blazor?

Client-Side Blazor
Server-Side Blazor
Blazor Fundamentals

Ogtane Demonstration

Blazor

Blazor is a single-page app framework
for building interactive web apps
with .NET Core.

Where It All Started...

Web Apps can't really do *that*, can they?
Steve Sanderson

NDC { Oslo }
12-16 June 2017

Inspiring Software Developers since 2008

Initial Announcement

""erson's Blog HOME ABOUT TWITTER

1 technical introduction

details about Blazor

Today the ASP.NET team announced that Blazor has moved into the
ASP.NET organization, and we're beginning an experimental phase to

see whether we can develop it into a supported shipping product. This
is a big step forwards!

Releases

https://github.com/aspnet/Blazor/releases

0.1.0 : Mar 22, 2018 0.5.0 : Aug 10, 2018* 3.0.0-P4 : Apr 18, 2019
0.2.0: Apr 17, 2018* 0.5.1: Aug 10, 2018 3.0.0-P5 : May 6, 2019

0.2.1 : Apr 20, 2018 0.6.0: Oct 2, 2018 3.0.0-P6 : June 2019
0.3.0: May 2, 2018 0.7.0 : Nov 15, 2018 3.0.0-P7 : July 2019
0.4.0:Jun 7, 2018 0.8.0: Feb 13, 2019 3.0.0-RTM : Sep 2019

0.9.0 : Mar 7, 2019

https://github.com/aspnet/Blazor/releases

Official Preview

Blazor now in official preview!

&

Daniel
April 18th, 2019

With this newest Blazor release we're pleased to announce that Blazor is now in official preview!
Blazor is no longer experimental and we are committing to ship it as a supported web Ul framework
including support for running client-side in the browser on WebAssembly.

A little over a year ago we started the Blazor experimental project with the goal of building a client
web Ul framework based on .NET and WebAssembly. At the time Blazor was little more than a
prototype and there were lots of open questions about the viability of running .NET in the browser.
Since then we've shipped nine experimental Blazor releases addressing a variety of concerns
including component model, data binding, event handling, routing, layouts, app size, hosting models,
debugging, and tooling. We're now at the point where we think Blazor is ready to take its next step.

2 Flavors of Blazor

2 Flavors of Blazor

ONE
DEVELOPMENT
MODEL

RAZOR
COMPONENTS

MULTIPLE
HOSTING
MODELS

Client-Side Blazor

What 1t i1s Not!

Microsoft®

Sllverllght

Some History

Alternative Browser Runtimes

Microsoft®

Silverlight -

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

WebAssembly (Wasm)

WebAssembly (abbreviated as Wasm) is a binary
Instruction format for a stack-based virtual machine
Originally introduced June 17, 2015

The first language since JavaScript that is able to run
natively in a web browser (without plug-ins)

‘ }4";' I |"-"‘|"h\ ?

How JavaScript Works

HTML (-html)

Runtime

JavaScript (.js)

How WebAssembly Works

HTML (.html)

Inline JS Browser

JavaScript
Runtime

JavaScript (.js)

WebAssembly (.wasm)

What About Mono?

e Inordertorun C#in the browser you need a .NET runtime

that's been compiled to WebAssembly
e Microsoft’s initial proof of concept used DotNetAnywhere
e Microsoft acquired Mono as part of Xamarin
e Mono.wasm is a version of Mono compiled to WebAssembly
e Mono.wasm is a full .NET runtime that can evaluate
.NET assemblies

mono

Client-Side Blazor

SERVER

.razor

.CS

Compile to
NET
assemblies

BROWSER

App.dll

WebAssembly

(mono.wasm)

Why .NET In the Browser?

JavaScript is the most popular programming language
in the world

With so many powerful front-end JavaScript
frameworks (ie. Angular, React, Vue) why do we
want to run .NET in the browser?

Because JavaScript SUCKS!!

Why .NET In the Browser?

o Stable and consistent: .NET offers standard APIs,
tools, and build infrastructure across all .NET
platforms that are stable, feature rich, and easy to
use.

e Modern innovative languages: .NET languages
like C# and F# make programming a joy and keep
getting better with innovative new language features.

Why .NET In the Browser?

o Industry leading tools: The Visual Studio product

family provides a great .NET development experience
on Windows, Linux, and macOS.

o Fast and scalable: .NET has a long history of
performance, reliability, and security for web
development on the server.

Challenges

e Mono not yet optimized to act as a runtime in a
browser

e Mono currently only supports .NET Standard 2.0

e Download sizes are currently very large

o Limited debugging support with current tooling

e Will not be supported in initial release of .NET Core 3.0

Server-Side Blazor

Server-Side Blazor

Leverages the same Razor component development

model
Utilizes a server-side hosting model - does not rely on

WebAssembly
Uses SignalR for communication between browser and

server

Server-Side Blazor

BROWSER

blazor.server.js

SERVER

NET

(mscorlib.dll,
System.Core. dll,...)

Server-Side Benefits

Avoids unnecessary full page refreshes

Smaller app download size and faster app startup

Full access to all .NET Core APIs

Debugging support using standard .NET tooling

Supports legacy browsers with no WebAssembly support
Will be officially supported in initial release of.NET Core 3.0

Challenges

o Latency: every user interaction now involves a

network hop.
o No offline support: if the client connection goes

down, the app stops working.
o Scalability: the server must manage multiple client

connections and handle client state

Future Opportunities

ONE
DEVELOPMENT
MODEL

RAZOR

COMPONENTS

ADDITIONAL
HOSTING
MODELS

(these examples were already demonstrated by Steve Sanderson at MVP Summit 2019)

Blazor Fundamentals

Getting Started
Component Model
Routing

Layouts

Data & Event Binding
Dependency Injection
Javascript Interop

Getting Started

Installation Instructions

e .NET Core 3.0 Preview 4 SDK (3.0.100-preview4-011223))

e Visual Studio 2019 Preview with “ASP.NET and Web Development Workload”

e The latest Blazor Extension from the Visual Studio Marketplace

e Enable Visual Studio to use preview SDKs: Open Tools > Options in the menu
bar. Open the Environment node. Open the Preview Features tab. Check the
box for Use previews of the .NET Core SDK. Select OK.

Component Model

e Razor Components are self-contained chunks of user
interface (Ul), such as a page, dialog, or form.

e Components includes HTML markup and the
processing logic required to inject data or respond to
Ul events.

« Components are flexible and lightweight. They can be
nested, reused, and shared among projects.

Component Model

Razor is converted into a component class during compilation (*.razor >> *.razor.g.cs)
\\WebApplication.Client\obj\Debug\netstandard2.0\Razor*

-

Counterrazor +# X FENGEAEY.o]

1 @page "/counter” #prag cksum "WebApplication5YPages\Counter.razor" "{ffl8l6ec-aaSe-4d16-87f7-6T4963833460}" "65483481ad47a7d895595. =%
2 /[<auto-generated/> -
3 <h1>Counter</hl> #pragma warning disable 1591

a —namespace WebApplication5.Pages g f
5 <p>Current count: @currentCount</p> 1

6 <input type="number” bind="incrementAmount” /> #line hidden

7 <butten class="btn btn-primary" onclick="@IncrementCount">Click me: = using System;

8 using System.Collections.Generic;

9 @functions { using System.Ling;

1@ int currentCount = @; using System.Threading.Tasks;

11 int incrementAmount = 18; using Microsoft.AsphNetCore.Components;

0 ﬂ using System.Net.Http;

13 = void IncrementCount() using Microsoft.AspNetCore.Components.Forms;

14 { using Microsoft.AsphNetCore.Components.lLayouts;

15 currentCount += incrementAmount; using Microsoft.AspNetCore.Components.Routing;

16 ¥ using Microsoft.JSInterop;

17 H using WebApplication5;

18 | using WebApplication5.Shared;

[Microsoft.AspNetCore.Components.Layouts.lLayoutAttribute(typeof(MainLayout))]
[Microsoft.AspNetCore.Components.RoutedAttribute("”/counter™)]
= public class Counter : Microsoft.AspNetCore.Components.ComponentBase
1
#pragma warning disable 1998
] protected override void BuildRenderTree(Microsoft.AspNetCore.Components.RenderTree.RenderTreeBuilder builder)
{
builder.AddMarkupContent(@®, "<hl>Counter</hl> ");
builder.OpenElement(1, "p");
builder.AddContent(2, "Current count: ");
builder.AddContent(3, currentCount);
builder.CloseElement();
builder.AddMarkupContent(4, " "¥;
builder.OpenElement(5, "input™);

Component Rendering

JavaScript

Render Tree

Change DOM
Ul Diff
ifferences Change DOM

JavaScript DOM

Server-Side Rendering

JavaScript

Renddr Tree
Change DOM

Evbnt
Ul Diﬁérences
Change DOM

JavaScript DOM

Using Components

Components use familiar HTML syntax and can reference other components:

<TitleComponent Title="Wow!" />

Components can accept Parameters using non-public properties:

<h1>@Title</h1>
@functions {
[Parameter]
private string Title { get; set; }

Client-side Routing

@page "/counter" <« ——— —

2

3 <h1>Counter</hl>

5 <p>Current count: @currentCount</p>

6 <input type="number” bind="incrementAmount" />
7 <butten class="btn btn-primary" enclick="@IncrementCount">Click me</button:
8

9 @functions {

18 int currentCount = @;

11 int incrementAmount = 18;

12

13 = void IncrementCount()

14 i

15 currentCount += incrementAmount;

16 ¥

Layouts

@inherits LayoutComponentBase _

2

3 -<div class="sidebar">»

4 <NavMenu />

5 < fdiv>

7 - <div class="main">

8 - <div class="top-row px-4">
g About
16 </div>

12 = <div class="content px-4">»
13 @Body h

14 </div>

15 </div>

One Way Data Binding

@page "/counter”

2

3 <h1>Counter</hl>

5 <p>Current count: @currentCount</p> —

6 <input type="number” bind="incrementAmount" />

7 <butten class="btn btn-primary" enclick="@IncrementCount">Click me</button:
5

@functions {

10 int currentCount = 8; G

11 int incrementAmount = 18;

12

13 = void IncrementCount()

14 i{

15 currentCount += incrementAmount;
16 ¥

Two Way Data Binding

@page "/counter"

2

3 <hl>Counter</hl>

5 <p>*Current count: @currentCount</p>

= <input type="number" bind="incrementAmount" /> _
7 <butten class="btn btn-primary" enclick="@IncrementCount">Click me</button:
8

9 @functions {

16 int currentCount = @;

11 int incrementAmount = 10; <e—

12

13 - void IncrementCount()

14 {

15 currentCount += incrementAmount;

16 }

Event Binding

@page "/counter"

2

3 <hl>Counter</hl>

5 <p>*Current count: @currentCount</p>

= <input type="number" bind="incrementAmount" />
7 <butten class="btn btn-primary" enclick="@IncrementCount">Click me</button:
8

9 @functions {
16 int currentCount = @;
11 int incrementAmount = 18;
12
13 - void IncrementCount () <«uu—

14 {

15 currentCount += incrementAmount;

16 }

Dependency Injection

@page "/fetchdata"

5 @inject HttpClient Http «———

i <hls>Weather forecast</hl>

5

6 <p>This component demonstrates fetching data from the server.</p>»
; -@if (forecasts == null)

9 1

<p>rLoading...</p>

e
=
—

JavaScript Interop

e Call JavaScript from C# or call C# from JavaScript

@inject IJSRuntime JsRuntime;

<p>Cookie Value: @value</p>
<button class="btn btn-primary" onclick="@GetValue">Click me</button:

@functions {
string value =

nmn
¥

1
var value = await JsRuntime.InvokeAsync<string>("GetCoockie", "MyCookie");

¥

Write Once, Run Anywhere?

e Itis possible to target multiple hosting models;
however, you need to architect your application
appropriately

o Client vs. Server Workloads

e .NET Standard 2.0 vs .NET Core 3.0

o HttpClient/Json Parser

e Async services

Demonstration

Introducing....

O oqtane

A Modular Application Framework for Blazor

o Inspired by DotNetNuke (but NOT a CMS)
e Written natively using Blazor

o Familiar page compositing/dashboard model
o Multi-tenant

o Designer friendly themes (skins)

o Distributable modules

e Open source

Page Compositing

Theme (Skin)

LeftPane RightPane

Container Container

Module2

Multi-Tenant

« Multi-site based on hosthname/subfolder
 Virtual pages based on Url Path

http://www.site.com/home

s

WWW.Site.com home
WWW.Site2.com about

WWW.Ssite3.com contact

Routing

« Dynamic Page Routing
* Module Routing via Querystring (?mid=1&ctl=edit)

Edit
1 (default)/ / FoIderPath/VzM
1 Edit /FolderPath/Edit-ascx

1 Settings /FolderPath/Settings.ascx

Settings |

Database

« Leverage “Core” DNN Data Model (~20 tables)

™ TabModulo: Medutes] MeduleDietinitacns

Purmiszion W Gt arma s

Technical Detalls

e Supports both client and server Blazor hosting models
e Custom Router

e Dynamic Components

o Cascading Parameters

e “Headless” API

e Repository Pattern

Framework Enhancements

e API Simplification

o« Modern Entity Naming Convention (ie. Tab = Page)
o Isolated Tenants (ie. Separate Databases)

o Auto Module Registration

e Theme Pane Layouts

o Eliminate Requirement for Admin Skin

Support from DNN Community

o Michael Washington (Install Wizard)

o David Poindexter (Bootstrap)

o Mitch Sellers (Rename Skin to Theme)
e Charles Nurse (SQLite research)

Support From Microsoft

From: Steve Sanderson

Sent: Monday, May 6, 2019 4:17 AM
To: Daniel Roth; Shaun Walker -

Cc: Ryan Nowak

Subject: RE: Clientside Blazor

Nice! Glad to see this is making its way out into the world @

Steve

From: Daniel Roth

Sent: 06 May 2019 04:23

To: Shaun Walker; Steve Sanderson
Cc: Ryan Nowak

Subject: RE: Clientside Blazor

Sweet! Congrats on releasing to GitHub!

Oqtane Community & Code

https://www.oqgtane.orqg/
https://github.com/ogtane/oqgtane.framework

oqtane / oqtane.framework © Watch~ | 26 W Unstar 102 YFork 16
<> Code Issues 6 Pull requests 0 Projects 0 Wiki Security Insights Settings
Modular Application Framework for Blazor http://www.ogtane.org Edit

Manage topics

P 49 commits ¥ 1 branch > 0 releases 2% 3 contributors s MIT
L[| |

Branch: master ~ New pull request Create new file Upload files Find File Clone or download ~
B sbwalker Updated Enable Visual Studio to use preview SDKs - Latest commit bfa3877 7 days ago
Ogtane.Client Performance improvements, refactoring of multi-tenant support, split ... 11 days ago
Qqtane.Server small fix to register new services in DI container for client-side BI... 11 days ago
Ogqtane.Shared Performance improvements, refactoring of multi-tenant support, split ... 11 days ago
[E) .gitignore Add initial .gitignore file 29 days ago

[E) LICENSE Update LICENSE a month ago

https://www.oqtane.org/
https://github.com/oqtane/oqtane.framework

Thank You!

