
Blazor: Blazing A Trail For

.NET Web Developers

Shaun Walker

shaun.walker@softvision.com

Shaun Walker

- Creator of DotNetNuke

- Founder of DNN Corp

- Microsoft MVP

- ASP Insider

- Chairman .NET Foundation Advisory Council

Technical Director & Enterprise Guildmaster

Cognizant Softvision

Agenda

● What is Blazor?

● Client-Side Blazor

● Server-Side Blazor

● Blazor Fundamentals

● Oqtane Demonstration

Blazor

Blazor is a single-page app framework

for building interactive web apps

with .NET Core.

Where It All Started…

Web Apps can't really do *that*, can they?

Steve Sanderson

Initial Announcement

Releases

0.1.0 : Mar 22, 2018

0.2.0 : Apr 17, 2018*

0.2.1 : Apr 20, 2018

0.3.0 : May 2, 2018

0.4.0 : Jun 7, 2018

0.5.0 : Aug 10, 2018*

0.5.1 : Aug 10, 2018

0.6.0 : Oct 2, 2018

0.7.0 : Nov 15, 2018

0.8.0 : Feb 13, 2019

0.9.0 : Mar 7, 2019

https://github.com/aspnet/Blazor/releases

3.0.0-P4 : Apr 18, 2019

3.0.0-P5 : May 6, 2019

3.0.0-P6 : June 2019

3.0.0-P7 : July 2019

3.0.0-RTM : Sep 2019

https://github.com/aspnet/Blazor/releases

Official Preview

2 Flavors of Blazor

2 Flavors of Blazor

RAZOR

COMPONENTS

O N E
D E V E L O P M E N T

M O D E L

CLIENT-SIDE

BLAZOR

SERVER-SIDE

BLAZOR

M U LT I P L E
H O S T I N G
M O D E L S

Client-Side Blazor

What it is Not!

Some History

WebAssembly (Wasm)

● WebAssembly (abbreviated as Wasm) is a binary

instruction format for a stack-based virtual machine

● Originally introduced June 17, 2015

● The first language since JavaScript that is able to run

natively in a web browser (without plug-ins)

How JavaScript Works

How WebAssembly Works

What About Mono?

● In order to run C# in the browser you need a .NET runtime

that's been compiled to WebAssembly

● Microsoft’s initial proof of concept used DotNetAnywhere

● Microsoft acquired Mono as part of Xamarin

● Mono.wasm is a version of Mono compiled to WebAssembly

● Mono.wasm is a full .NET runtime that can evaluate

.NET assemblies

Client-Side Blazor

BROWSER

WebAssembly

(mono.wasm)

App.dll

mscorlib.dll,

netstandard.dll, etc…

Compile to

.NET

assemblies

SERVER

.razor

.cs

Why .NET in the Browser?

● JavaScript is the most popular programming language

in the world

● With so many powerful front-end JavaScript

frameworks (ie. Angular, React, Vue) why do we

want to run .NET in the browser?

Because JavaScript SUCKS!!

Why .NET in the Browser?

● Stable and consistent: .NET offers standard APIs,

tools, and build infrastructure across all .NET

platforms that are stable, feature rich, and easy to

use.

● Modern innovative languages: .NET languages

like C# and F# make programming a joy and keep

getting better with innovative new language features.

Why .NET in the Browser?

● Industry leading tools: The Visual Studio product

family provides a great .NET development experience

on Windows, Linux, and macOS.

● Fast and scalable: .NET has a long history of

performance, reliability, and security for web

development on the server.

Challenges

● Mono not yet optimized to act as a runtime in a

browser

● Mono currently only supports .NET Standard 2.0

● Download sizes are currently very large

● Limited debugging support with current tooling

● Will not be supported in initial release of .NET Core 3.0

Server-Side Blazor

Server-Side Blazor

● Leverages the same Razor component development

model

● Utilizes a server-side hosting model - does not rely on

WebAssembly

● Uses SignalR for communication between browser and

server

Server-Side Blazor

SERVER

.NET

(mscorlib.dll,

System.Core.dll,…)

App.dll

SignalR

BROWSER

.html

blazor.server.js

Server-Side Benefits

● Avoids unnecessary full page refreshes

● Smaller app download size and faster app startup

● Full access to all .NET Core APIs

● Debugging support using standard .NET tooling

● Supports legacy browsers with no WebAssembly support

● Will be officially supported in initial release of.NET Core 3.0

Challenges

● Latency: every user interaction now involves a

network hop.

● No offline support: if the client connection goes

down, the app stops working.

● Scalability: the server must manage multiple client

connections and handle client state

Future Opportunities

RAZOR

COMPONENTS

O N E
D E V E L O P M E N T

M O D E L

PROGRESSIVE

WEB APP

ELECTRON

DESKTOP APP

A D D I T I O N A L
H O S T I N G
M O D E L S

(these examples were already demonstrated by Steve Sanderson at MVP Summit 2019)

Blazor Fundamentals

● Getting Started

● Component Model

● Routing

● Layouts

● Data & Event Binding

● Dependency Injection

● Javascript Interop

Getting Started

Installation Instructions

● .NET Core 3.0 Preview 4 SDK (3.0.100-preview4-011223))

● Visual Studio 2019 Preview with “ASP.NET and Web Development Workload”

● The latest Blazor Extension from the Visual Studio Marketplace

● Enable Visual Studio to use preview SDKs: Open Tools > Options in the menu

bar. Open the Environment node. Open the Preview Features tab. Check the

box for Use previews of the .NET Core SDK. Select OK.

Component Model

● Razor Components are self-contained chunks of user

interface (UI), such as a page, dialog, or form.

● Components includes HTML markup and the

processing logic required to inject data or respond to

UI events.

● Components are flexible and lightweight. They can be

nested, reused, and shared among projects.

Component Model
Razor is converted into a component class during compilation (*.razor >> *.razor.g.cs)

\\WebApplication.Client\obj\Debug\netstandard2.0\Razor*

Component Rendering

C#

C#

JavaScript

JavaScript

DOM

DOM

Render Tree
Change DOM

Event

UI Differences
Change DOM

Server-Side Rendering

C#

C#

JavaScript

JavaScript

DOM

DOM

Render Tree
Change DOM

Event

UI Differences
Change DOM

Server

Using Components

Components use familiar HTML syntax and can reference other components:

<TitleComponent Title="Wow!" />

Components can accept Parameters using non-public properties:

<h1>@Title</h1>
@functions {

[Parameter]
private string Title { get; set; }

}

Client-side Routing

Layouts

One Way Data Binding

Two Way Data Binding

Event Binding

Dependency Injection

JavaScript Interop

● Call JavaScript from C# or call C# from JavaScript

Write Once, Run Anywhere?

● It is possible to target multiple hosting models;

however, you need to architect your application

appropriately

● Client vs. Server Workloads

● .NET Standard 2.0 vs .NET Core 3.0

● HttpClient/Json Parser

● Async services

Demonstration

Introducing….

A Modular Application Framework for Blazor

Oqtane

● Inspired by DotNetNuke (but NOT a CMS)

● Written natively using Blazor

● Familiar page compositing/dashboard model

● Multi-tenant

● Designer friendly themes (skins)

● Distributable modules

● Open source

Page Compositing

Theme (Skin)

Page

LeftPane

Container

Module1

RightPane

Container

Module2

Multi-Tenant

http://www.site.com/home

Sites

www.site.com

www.site2.com

www.site3.com

Pages

home

about

contact

• Multi-site based on hostname/subfolder

• Virtual pages based on Url Path

Routing

Settings

Edit

• Dynamic Page Routing

• Module Routing via Querystring (?mid=1&ctl=edit)

View

ModuleID Key Source

1 (default) /FolderPath/View.ascx

1 Edit /FolderPath/Edit.ascx

1 Settings /FolderPath/Settings.ascx

Database

• Leverage “Core” DNN Data Model (~20 tables)

Technical Details

● Supports both client and server Blazor hosting models

● Custom Router

● Dynamic Components

● Cascading Parameters

● “Headless” API

● Repository Pattern

Framework Enhancements

● API Simplification

● Modern Entity Naming Convention (ie. Tab = Page)

● Isolated Tenants (ie. Separate Databases)

● Auto Module Registration

● Theme Pane Layouts

● Eliminate Requirement for Admin Skin

Support from DNN Community

● Michael Washington (Install Wizard)

● David Poindexter (Bootstrap)

● Mitch Sellers (Rename Skin to Theme)

● Charles Nurse (SQLite research)

Support From Microsoft

Oqtane Community & Code

https://www.oqtane.org/

https://github.com/oqtane/oqtane.framework

https://www.oqtane.org/
https://github.com/oqtane/oqtane.framework

Thank You!

